c1 of equ reflexive 7K5NKC82

c1 of equ reflexive


Corollary 2.18. Let E = K(E) be an equivariant reflexive sheaf on X, given by a family of filtrations E = {(EF (i)) ⊂ E : F ≺ P, i ∈ Z}. The first Chern class of E is the class of the Weil divisor: c1(E) = − ∑ F ≺P iF (det E) DF . (2.5) where for all F ≺ P , iF (det E) = ∑ i∈Z ieF (i). (pdf) (Clarke 和 Tipler, 2023, p. 395)