Catalogue
Tangent space of $\mathrm{Mor}(Y,X)$
Goal: proof that
$$ T_{Mor(Y,x),[f]} \cong H^0(Y,\mathcal{H}om(f^*\Omega _X,\mathcal{O}_Y) $$
dimension of tangent space
$$ \dim T_{Mor(Y,x),[f]} \geq h^0(Y,f^T_X) - h^1(Y,f^T_X) $$
Inparticular, if $h^1(Y,f^*T_X)=0$, then smooth at $[f]$
skip this proof.